1,667 research outputs found

    Coccidioidomycosis: a reemerging infectious disease.

    Get PDF
    Coccidioides immitis, the primary pathogenic fungus that causes coccidioidomycosis, is most commonly found in the deserts of the southwestern United States and Central and South America. During the early 1990s, the incidence of coccidioidomycosis in California increased dramatically. Even though most infections are subclinical or self-limited, the outbreak is estimated to have cost more than $66 million in direct medical expenses and time lost from work in Kern County, California, alone. In addition to the financial loss, this pathogen causes serious and life-threatening disseminated infections, especially among the immunosuppressed, including AIDS patients. This article discusses factors that may be responsible for the increased incidence of coccidioidomycosis (e.g., climatic and demographic changes and the clinical problems of coccidioidomycosis in the immunocompromised) and new approaches to therapy and prevention

    The role of reactive oxygen intermediates in experimental coccidioidomycois in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Coccidioidomycosis is usually a self-limited infection in immunocompentent people. In immunocompentent human beings second infections due to <it>Coccidioides </it>are very rare, indicating that recovery from infection results in protective immunity. In experimental animals, immunization with several different proteins or attenuated mutants protects against a virulent challenge. To explore what mechanisms are responsible for protective immunity, we investigated the course of <it>Coccidioides </it>infection in the gp91<sup>phox </sup>knock out mouse that has a defect in the oxidative burst that results in chronic granulomatous disease.</p> <p>Results</p> <p>We found that the gp91<sup>phox </sup>knock out mice were somewhat more resistant to intraperitoneal infection and equally as resistant to low dose intranasal infection, but slightly more susceptible to high dose intranasal infection compared to control mice. The gp91<sup>phox </sup>knock out mice made a more robust inflammatory response to infection than controls, as measured by histology and production of inflammatory cytokines. The gp91<sup>phox </sup>knock out mice were as protected by immunization with the recombinant <it>Coccidioides </it>protein Ag2/PRA as the controls were against either intraperitoneal or intranasal infection. <it>Coccidioides immitis </it>arthroconidia and spherules were significantly more resistant to H<sub>2</sub>O<sub>2 </sub>treatment in vitro than <it>Aspergillus fumigatus </it>spores.</p> <p>Conclusion</p> <p>These data suggest that oxidative burst may not be required for protective immunity to coccidioidomycois.</p

    Soil bacterial and fungal communities across a pH gradient in an arable soil

    Get PDF
    Soils collected across a long-term liming experiment (pH 4.0-8.3), in which variation in factors other than pH have been minimized, were used to investigate the direct influence of pH on the abundance and composition of the two major soil microbial taxa, fungi and bacteria. We hypothesized that bacterial communities would be more strongly influenced by pH than fungal communities. To determine the relative abundance of bacteria and fungi, we used quantitative PCR (qPCR), and to analyze the composition and diversity of the bacterial and fungal communities, we used a bar-coded pyrosequencing technique. Both the relative abundance and diversity of bacteria were positively related to pH, the latter nearly doubling between pH 4 and 8. In contrast, the relative abundance of fungi was unaffected by pH and fungal diversity was only weakly related with pH. The composition of the bacterial communities was closely defined by soil pH; there was as much variability in bacterial community composition across the 180-m distance of this liming experiment as across soils collected from a wide range of biomes in North and South America, emphasizing the dominance of pH in structuring bacterial communities. The apparent direct influence of pH on bacterial community composition is probably due to the narrow pH ranges for optimal growth of bacteria. Fungal community composition was less strongly affected by pH, which is consistent with pure culture studies, demonstrating that fungi generally exhibit wider pH ranges for optimal growth. The ISME Journal (2010) 4, 1340-1351; doi: 10.1038/ismej.2010.58; published online 6 May 2010&nbsp

    SitePainter: a tool for exploring biogeographical patterns

    Get PDF
    As microbial ecologists take advantage of high-throughput analytical techniques to describe microbial communities across ever-increasing numbers of samples, the need for new analysis tools that reveal the intrinsic spatial patterns and structures of these populations is crucial. Here we present SitePainter, an interactive graphical tool that allows investigators to create or upload pictures of their study site, load diversity analyses data and display both diversity and taxonomy results in a spatial context. Features of SitePainter include: visualizing α -diversity, using taxonomic summaries; visualizing β -diversity, using results from multidimensional scaling methods; and animating relationships among microbial taxa or pathways overtime. SitePainter thus increases the visual power and ability to explore spatially explicit studies

    The emerging contribution of social wasps to grape rot disease ecology

    Get PDF
    Grape sour (bunch) rot is a polymicrobial disease of vineyards that causes millions of dollars in lost revenue per year due to decreased quality of grapes and resultant wine. The disease is associated with damaged berries infected with a community of acetic acid bacteria, yeasts, and filamentous fungi that results in rotting berries with high amounts of undesirable volatile acidity. Many insect species cause the initial grape berry damage that can lead to this disease, but most studies have focused on the role of fruit flies in facilitating symptoms and vectoring the microorganisms of this disease complex. Like fruit flies, social wasps are abundant in vineyards where they feed on ripe berries and cause significant damage, while also dispersing yeasts involved in wine fermentation. Despite this, their possible role in disease facilitation and dispersal of grape rots has not been explored. We tested the hypothesis that the paper wasp Polistes dominulus could facilitate grape sour rot in the absence of other insect vectors. Using marker gene sequencing we characterized the bacterial and fungal community of wild-caught adults. We used a sterilized foraging arena to determine if these wasps transfer viable microorganisms when foraging. We then tested if wasps harboring their native microbial community, or those inoculated with sour rot, had an effect on grape sour rot incidence and severity using a laboratory foraging arena. We found that all wasps harbor some portion of the sour rot microbial community and that they have the ability to transfer viable microorganisms when foraging. Foraging by inoculated and uninoculated wasps led to an increase in berry rot disease symptom severity and incidence. Our results indicate that paper wasps can facilitate sour rot diseases in the absence of other vectors and that the mechanism of this facilitation may include both increasing host susceptibility and transmitting these microbial communities to the grapes. Social wasps are understudied but relevant players in the sour rot ecology of vineyards

    The total amounts of radioactively contaminated materials in forests in Fukushima, Japan

    Get PDF
    There has been leakage of radioactive materials from the Fukushima Daiichi Nuclear Power Plant. A heavily contaminated area (≥ 134, 137Cs 1000 kBq m−2) has been identified in the area northwest of the plant. The majority of the land in the contaminated area is forest. Here we report the amounts of biomass, litter (small organic matter on the surface of the soil), coarse woody litter, and soil in the contaminated forest area. The estimated overall volume and weight were 33 Mm3 (branches, leaves, litter, and coarse woody litter are not included) and 21 Tg (dry matter), respectively. Our results suggest that removing litter is an efficient method of decontamination. However, litter is being continuously decomposed, and contaminated leaves will continue to fall on the soil surface for several years; hence, the litter should be removed promptly but continuously before more radioactive elements are transferred into the soil

    Microbial Biogeography of Public Restroom Surfaces

    Get PDF
    We spend the majority of our lives indoors where we are constantly exposed to bacteria residing on surfaces. However, the diversity of these surface-associated communities is largely unknown. We explored the biogeographical patterns exhibited by bacteria across ten surfaces within each of twelve public restrooms. Using high-throughput barcoded pyrosequencing of the 16 S rRNA gene, we identified 19 bacterial phyla across all surfaces. Most sequences belonged to four phyla: Actinobacteria, Bacteriodetes, Firmicutes and Proteobacteria. The communities clustered into three general categories: those found on surfaces associated with toilets, those on the restroom floor, and those found on surfaces routinely touched with hands. On toilet surfaces, gut-associated taxa were more prevalent, suggesting fecal contamination of these surfaces. Floor surfaces were the most diverse of all communities and contained several taxa commonly found in soils. Skin-associated bacteria, especially the Propionibacteriaceae, dominated surfaces routinely touched with our hands. Certain taxa were more common in female than in male restrooms as vagina-associated Lactobacillaceae were widely distributed in female restrooms, likely from urine contamination. Use of the SourceTracker algorithm confirmed many of our taxonomic observations as human skin was the primary source of bacteria on restroom surfaces. Overall, these results demonstrate that restroom surfaces host relatively diverse microbial communities dominated by human-associated bacteria with clear linkages between communities on or in different body sites and those communities found on restroom surfaces. More generally, this work is relevant to the public health field as we show that human-associated microbes are commonly found on restroom surfaces suggesting that bacterial pathogens could readily be transmitted between individuals by the touching of surfaces. Furthermore, we demonstrate that we can use high-throughput analyses of bacterial communities to determine sources of bacteria on indoor surfaces, an approach which could be used to track pathogen transmission and test the efficacy of hygiene practices

    Strategies to improve reference databases for soil microbiomes

    Get PDF
    Microbial populations in the soil are critical in our lives. The soil microbiome helps to grow our food, nourishing and protecting plants, while also providing important ecological services such as erosion protection, water filtration and climate regulation. We are increasingly aware of the tremendous microbial diversity that has a role in soil heath; yet, despite significant efforts to isolate microbes from the soil, we have accessed only a small fraction of its biodiversity. Even with novel cell isolation techniques

    Ecological and Genomic Attributes of Novel Bacterial Taxa That Thrive in Subsurface Soil Horizons.

    Get PDF
    While most bacterial and archaeal taxa living in surface soils remain undescribed, this problem is exacerbated in deeper soils, owing to the unique oligotrophic conditions found in the subsurface. Additionally, previous studies of soil microbiomes have focused almost exclusively on surface soils, even though the microbes living in deeper soils also play critical roles in a wide range of biogeochemical processes. We examined soils collected from 20 distinct profiles across the United States to characterize the bacterial and archaeal communities that live in subsurface soils and to determine whether there are consistent changes in soil microbial communities with depth across a wide range of soil and environmental conditions. We found that bacterial and archaeal diversity generally decreased with depth, as did the degree of similarity of microbial communities to those found in surface horizons. We observed five phyla that consistently increased in relative abundance with depth across our soil profiles: Chloroflexi, Nitrospirae, Euryarchaeota, and candidate phyla GAL15 and Dormibacteraeota (formerly AD3). Leveraging the unusually high abundance of Dormibacteraeota at depth, we assembled genomes representative of this candidate phylum and identified traits that are likely to be beneficial in low-nutrient environments, including the synthesis and storage of carbohydrates, the potential to use carbon monoxide (CO) as a supplemental energy source, and the ability to form spores. Together these attributes likely allow members of the candidate phylum Dormibacteraeota to flourish in deeper soils and provide insight into the survival and growth strategies employed by the microbes that thrive in oligotrophic soil environments.IMPORTANCE Soil profiles are rarely homogeneous. Resource availability and microbial abundances typically decrease with soil depth, but microbes found in deeper horizons are still important components of terrestrial ecosystems. By studying 20 soil profiles across the United States, we documented consistent changes in soil bacterial and archaeal communities with depth. Deeper soils harbored communities distinct from those of the more commonly studied surface horizons. Most notably, we found that the candidate phylum Dormibacteraeota (formerly AD3) was often dominant in subsurface soils, and we used genomes from uncultivated members of this group to identify why these taxa are able to thrive in such resource-limited environments. Simply digging deeper into soil can reveal a surprising number of novel microbes with unique adaptations to oligotrophic subsurface conditions
    corecore